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Abstract Dissipative particle dynamics (DPD) is a mesos-
cale particle method that bridges the gap between micro-
scopic and macroscopic simulations. It can be regarded as
a coarse-grained molecular dynamics method suitable for
larger time and length scales. It has been successfully applied
to different areas of interests, especially in modeling the
hydrodynamic behavior of complex fluids in mesoscale.
This paper presents an overview on DPD including the
methodology, formulation, implementation procedure and
some related numerical aspects. The paper also reviews the
major applications of the DPD method, especially in model-
ing (1) micro drop dynamics, (2) multiphase flows in micro-
channels and fracture networks, (3) movement and suspen-
sion of macromolecules in micro channels and (4) move-
ment and deformation of single cells. The paper ends with
some concluding remarks summarizing the major features
and future possible development of this unique mesoscale
modeling technique.
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1 Introduction

By integrating mechanical elements, sensors, actuators, and
electronic components using microfabrication technology,
microelectromechanical systems (MEMS) can be designed
to be fast in response, capable of achieving high spatial res-
olution, and cost-effective in mass production, due to the
batch micromachining techniques [1,2]. Since its emergence,
MEMS technology has found many important applications to
chemical, biological and medical sciences and engineering.
For example, MEMS for biomedical and biological applica-
tions (usually referred to as BioMEMS) are capable of deliv-
ering, processing and analyzing biochemical materials in a
wide range of problems, such as disease diagnosis, clinical
assays, drug screening and delivery, and even gene search-
ing and sequencing. BioMEMS usually are more efficient
and more effective than traditional biomedical and biologi-
cal techniques. It is also observed that most of the BioMEMS
devices use features of microfluidics. Therefore, character-
ization of fluid flows in MEMS devices has increasingly
becoming a very important topic since the fluidic behavior
in MEMS is very different from what observed in daily life
experienced at macroscales [3,4].

One typical feature of fluid flows in MEMS devices is the
size effects. For example, the delivery of drugs is usually
conducted by the movement and suspension of macromole-
cules in micro-channels, where the size of the drug agents
(usually DNA molecules) and the size of the micro-channel
are important to understand the effects of the macromolecu-
lar conformation. If the Knudsen number, Kn, defined here
as the ratio of the macromolecular length to the character-
istic length of flow field, is much smaller than unity (e.g.,
Kn � 1), the movement and suspension of macromolecules
(in macro channels) can be as regarded a continuum flow. If
the Knudsen number is around (or even bigger than) unity,
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the movement and suspension of macromolecules (in micro-
channels) may not be regarded as a continuum flow. The sus-
pension of DNA in micro-channel is exactly the case with
Kn � O(1), as the length of a typical DNA molecule is usu-
ally in the same order as the size of a typical micro-channel.
For example, the size of a typical micro-channel is about
9–40µm [5], and the uncoiled length of a λ-DNA is about
22µm [6] to 33µm [7,8]. Hence the standard rheological
models developed from continuum assumptions for contin-
uum applications may be misleading in describing such flows
with Kn � O(1). Also as the molecular dynamics simulation
is not feasible for modeling such flows as it is yet restricted
from practical applications due to the extremely small time
scales (nanoseconds) and length scales (nanometers). There-
fore the development of numerical methods at mesoscale is
required for effective modeling of microfluidics behaviors.

In general, mesoscale denotes the (length and time)
scale larger than atomic scale, but smaller than macroscale.
The definition of mesoscale is not rigid and can be dif-
ferent in computational material science, computational
physics, computational biology, chemistry, and computa-
tional mechanics. For example, in computational material
science and computational mechanics, mesoscale usually
involves a characteristic length ranging from 10−7 to 10−4 m
and a characteristic time ranging from 10−9 to 10−3 s. This
overlaps the microscale (a characteristic length ranging from
10−8 to 10−6 m and a characteristic time ranging from 10−11

to 10−8 s) and macroscale (a characteristic length bigger than
10−4 m and a characteristic time bigger than 10−3 s) (Fig. 1).

For problems at different scales, different computa-
tional models should be correspondingly used [9–11]. For
macroscale problems, computational models such as the
finite element method (FEM) [12–14], smoothed finite ele-
ment method (S-FEM) [15] finite difference method (FDM)
or finite volume method (FVM) [16–19], as well as mesh-
free methods [20–24] can be used. These macroscale com-
putational models usually involve constitutive relations to
solve a system of partial different equations established based
on the assumption of continuum of media. When the length
scale gradually reduces, the constitutive relations based on
continuum assumptions may no longer be valid. For nano
and microscale problems, the atomistic models such as the
classic molecular dynamics (MD) [25–27], Ab initio MD
[28,29], and monte carlo (MC) [30–32] can be used. The
atomistic models provide a fundamental way of obtaining a
better understanding of the behavior of fluid flow in micro-
channels. However, due to the very small length and time
scales associated with these methods, they are computation-
ally expensive, even for modern supercomputers, and they
cannot be applied to many important scientific and practical
problems.

Some mesoscopic or coarse-grained simulation meth-
ods have been developed during the last two decades. The
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Fig. 1 Different length and time scales and corresponding computa-
tional methods

closely related lattice-Boltzmann (LB) [33–37] and lattice-
gas automaton (LGA) [38,39] models that are defined on
a regular lattice or grid have been extensively investigated.
Although lattice-Boltzmann and lattice-gas cellular automa-
ton models have been extended to a wide range of appli-
cations such as colloidal systems and multiphase flows in
porous media, they have some disadvantages that are asso-
ciated with the restriction of the dynamics to the stream-
ing of ‘particles’ between adjacent nodes on a regular lat-
tice. Another approach is to use particle-based simulation
methods, similar to molecular dynamics, in which individ-
ual particles represent a volume of fluid that may vary in
size, depending on the model, from a small cluster of atoms
or molecules to macroscopic regions in a continuum solid
or fluid. These off-lattice methods are manifestly Galilean
invariant (unlike some lattice Boltzmann models). One of
these methods, smoothed particle hydrodynamics (SPH), was
originally invented to solve astrophysical problems [40–42],
and it has been gradually modified for much smaller scale
[22,43–46]. In SPH, the fluid is represented by overlapping
weight functions, or smoothing functions, centered on the
particles. The particles move with the local velocity of the
fluid, and the acceleration of each particle is calculated from
the local pressure gradient and the fluid density. The density
at any point can be calculated from the positions of the par-
ticles that are within the range of the weight function, and
the corresponding pressure is obtained from an equation of
state. Other forces, such as those due to viscosity, which act
in concert with the forces associated with the pressure gradi-
ent to determine the particle accelerations, can be estimated
using the positions and velocities of neighboring particles,
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the weight function and the derivatives of the weight func-
tion. The SPH method for mesoscopic applications is still
under development, and quantitative relationships between
model parameters and the macroscopic properties of the flu-
ids that these models simulate are difficult to establish [47].
For more details on LB, LGA and SPH and their applica-
tions, please refer to some review articles and monographs.
Typical review articles include the review on LB by Chen
and Doolen [37], and Aidun and Clausen [48], the review
on SPH by Monaghan [42,49], by Cleary et al. [43], and by
Liu and Liu [50], and the review paper by Koumoutsakos
on multiscale flow simulations using particles and particle
methods [51]. Typical monographs include the book on LB
by Sukop and Thorne [52], and by Guo and Shu [53], the
book on LB and LGA by Wolf-Gladrow [54] and the book
on SPH by Liu and Liu [22].

Dissipative particle dynamics (DPD) [55] is a relatively
new mesoscale technique that can be used to simulate the
behavior of fluids. As stated by Hoogerbrugge and Koelman
[55], the DPD method is a “novel particle-based scheme com-
bining the best of both MD and LGA simulations”, which is
“much faster than MD and much more flexible than LGA”.
In DPD simulations, the particles represent clusters of mole-
cules that interact via conservative (non-dissipative), dissi-
pative and fluctuating forces. Because the effective interac-
tions between clusters of molecules are much softer than the
interactions between individual molecules, much longer time
steps can be taken relative to MD simulations. The longer
time steps combined with the larger particle size makes it
much more practical to simulate hydrodynamics using DPD
than MD. DPD is particularly promising for the simulation of
complex liquids, such as polymer suspensions, liquids with
interfaces, colloids and gels. Because of the symmetry of
the interactions between the particles in typical simulations,
DPD rigorously conserves the total momentum of the system,
and because the particle–particle interactions depend only on
relative positions and velocities, the resulting model fluids are
Galilean invariant. Mass is conserved because the same mass
is associated with each of the particles, and the number of
particles does not change. While DPD is not as computation-
ally efficient as lattice Boltzmann simulations, it is a more
flexible method that does not suffer from the numerical insta-
bility associated with many lattice Boltzmann applications.
DPD facilitates the simulation of complex fluid systems on
physically interesting and important length and time scales,
including bio-particle and DNA filtering systems [56–58].

Español and Warren [59] and Marsh [60] established a
sound theoretical basis for DPD based on statistical mechan-
ics, and Groot and Warren obtained parameter ranges to
achieve a satisfactory compromise between speed, stabil-
ity, rate of temperature equilibration and compressibility
[61]. Unlike traditional DPD methods that use a conserv-
ative pairwise force between particles that only depends on

their interparticle separation, the multi-body DPD (MDPD)
model presented by Pagonabarraga and Frenkel [62] assumes
that the conservative force also depends on the instantaneous
local particle density, which in turn depends on the positions
of many neighboring particles. Therefore, the conservative
interaction is a many-body interaction.

It is possible to couple DPD with SPH for multiple scale
simulations or develop a variety of ‘hybrid’ models that
combine DPD and SPH concepts. Español [63] described
a fluid particle dynamics (FPM) model that is a synthesis
of DPD and SPH, and Español and Revenga [64] combined
features from DPD and SPH to develop the smoothed dissipa-
tive particle dynamics (SDPD) model in which the Navier–
Stokes (N–S) equation governing the system is discretized
using SPH approximations while thermal fluctuations are
included in a consistent way. Therefore, SDPD is a modi-
fied SPH model that has little in common with the original
DPD method, except for the random forces representing the
thermal fluctuations, which are an essential component of
DPD simulations.

In this work, the dissipative particle dynamics shall be
reviewed both in methodology and applications. The DPD
methodology will be first introduced in Sect. 2, including
the coarse-graining concept, governing equations, the time
integration algorithms, the calculation of stress tensor, the
determination of coefficients, and the common computa-
tional procedure in DPD simulation. In Sect. 3, some numer-
ical aspects of DPD are discussed including the assessment
of dynamic properties (such as viscosity and Schmidt num-
ber), solid boundary treatment for complex flow geome-
tries, modification of conservative interaction potentials for
modeling systems with co-existing liquid–gas–solid phases,
and spring-bead chain model for simulating complex fluids
(macromolecules such as DNA). In Sect. 4, recent applica-
tions of the DPD shall be reviewed with focus on micro drop
dynamics, multiphase flows in pore-scale fracture network
and porous media, movement and suspension of macromole-
cules in micro-channels, and movement and deformation of
single cells. Section 5 gives some concluding remarks and
future prospects.

2 Dissipative Particle Dynamics Methodology

2.1 Coarse-Graining

The classic molecular dynamics is a very important approach
for investigating complex fluids such as polymers and macro-
molecules, and it is in principle capable of providing reliable
results on all scales. As each particle in MD represents a true
atom or molecule, MD can describe the dynamic behavior
of a complex system with comprehensive details on every
atom. MD simulations thus are usually limited to extremely
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small time scales (nanoseconds) and length scales (nanome-
ters) even if the state-of-art high performance computing
techniques are used. However, most practical applications
involve larger spatial and time scales. For example, poly-
mers and many other materials frequently show a hierarchy
of length scales and associated time scales. This requires a
very large number of particles (and a very big number of
degree of freedom) if using molecular dynamics simulation.
To reduce the number of degrees of freedom, coarse-grained
molecular dynamic techniques have been developed [58,65–
67].

In the coarse-grained MD simulations, some trivial molec-
ular details that do not affect the behavior at larger scales can
be ignored, while the main features of concerned physics
need to be effectively obtained. A general procedure in
coarse-graining usually involves:

1. Defining the goal and determining the degree of coarse-
graining;

2. Mapping atomistic model to coarse-grained model;
3. Interaction between the coarse-grained particles;
4. Reproducing target functions by the coarse-grained

model;
5. Optimizing parameters/functions in the coarse-grained

model, and
6. Conducting coarse-grained simulations.

The goal and degree of coarse-graining are usually
application-driven and they describe the number of atoms/
molecules in a typical particle in the coarse-grained model.
This is closely related to the minimal features of the atom-
istic model that should be retained to reproduce the desired
properties in the coarse-grained model. Mapping atomistic
model to coarse-grained model is very important in defining
the positions of coarse-grained particles and it directly influ-
ences the parameterization of the coarse-grained force field.
The interaction between the coarse-grained particles is usu-
ally conducted with analytical functions (e.g., LJ potential
in classic MD) or numerical functions of the positions of the
coarse-grained particles.

Dissipative particle dynamics is such a coarse-grained
molecular dynamics model, in which the particles repre-
sent clusters of molecules that interact via conservative (non-
dissipative), dissipative and fluctuating forces. As a coarse-
grained MD model, DPD follows the above-mentioned
coarse-graining procedure.

2.2 Governing Equations

In DPD models, a fluid system is simulated using a set of
interacting particles. Each particle represents a cluster of
small molecules instead of a single molecule. It is conve-
nient to assume that all of the particles have equal masses,

and use the mass of the particles as the unit of mass. New-
ton’s second law governs the motion of each particle. The
equation of motion for particle i can therefore be expressed
as

dri
dt

= vi ,
dvi
dt

= fi = f inti + fexti , (1)

where ri and vi are the position and velocity vectors, and fexti
is the external force including the effects of gravity. In Eq.
(1), the inter-particle force acting on particle i, finti , is usually
assumed to be pairwise additive and consist of three parts: a
conservative (non dissipative) force, FC

i j , a dissipative force,

FD
i j , and a random force, FR

i j ,

f inti =
∑

j �=i

Fi j =
∑

j �=i

FC
i j + FD

i j + FR
i j . (2)

Here, Fi j is the force on particle i due to interaction with
particle j , which is equal to F j i in magnitude and opposite
in direction. The symmetry of the interactions Fi j = −F j i

ensures that momentum is rigorously conserved. The pair-
wise particle–particle interactions have a finite cutoff dis-
tance, rc, which is usually taken as the unit of length in DPD
models.

The conservative force, FC
i j , is a soft interaction acting

along the line of particle centers, which is often given the
form

FC
i j = ai jw

C (r)r̂i j ,

wC (r) =
{

(1 − r) r < 1.0,

0 r ≥ 1.0,
(3)

where ai j is the maximum repulsion between particles i and
j, ri j = ri − r j , r = ri j = ∣∣ri j

∣∣ and r̂i j = ri j/ri j . Here,
wC (ri j ) is the weight function for the conservative force. It
is noted that weight function corresponds to a soft potential,
which allows much larger length and time scales in DPD.
The weight function describes a repulsive force, which can
well model the behavior of gas in confined spaces, but can-
not be used to simulate liquid–gas–solid co-existing systems
including the behavior of bubbly liquids, droplet dynamics
and other important multiphase fluid flow processes.

The dissipative force, FD
i j , represents the effects of viscos-

ity, and it depends on both the relative positions and velocities
of the particles. The form usually used for this interaction in
DPD simulations is

FD
i j = −γwD (

ri j
) (
r̂i j · vi j

)
r̂i j , (4)

where γ is a coefficient, vi j = vi − v j and wD
(
ri j

)
is a

distance-dependent weight function. The random force, FR
i j ,

representing the effects of thermal fluctuations also depends
on the relative positions of the particles, and it is defined as

FR
i j = σwR (

ri j
)
ξi j r̂i j , (5)
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where σ is a coefficient, wR
(
ri j

)
is a distance-dependent

weight function, and ξi j is a random variable with a Gaussian
distribution and unit variance. The dissipative force and ran-
dom force also act along the line of particle centers and there-
fore also conserve linear and angular momentum.

As pointed by Español and Warren [59], in order to recover
the proper thermodynamic equilibrium for a DPD fluid at a
prescribed temperatures T , the coefficients and the weight
functions for the random force and the dissipative force are
related by

wD(r) =
[
wR (r)

]2
, (6)

and

γ = σ 2

2kBT
, (7)

as required by the fluctuation-dissipation theorem. In Eq. (7),
kB is the Boltzmann constant. All of the interaction energies
are expressed in units of kBT , which is usually assigned a
value of unity. One simple, straightforward and commonly
used choice is

wD(r) =
[
wR (r)

]2 =
{

(1 − r/rc)s r < rc
0 r ≥ rc

, (8)

where rc is the cut-off distance of the dissipative and random
force. In conventional DPD formulation, it usually takes the
same value as the cut-off distance of the conservative force
(usually unit value), but can vary to modify the dynamic
properties in DPD simulation as will be shown later. s denotes
the exponent of the weighting function. It is reported by Fan et
al. [68] that different s can lead to different dynamic behavior
of a DPD system. For conventional DPD formulation, s = 2.
wD (r) and its gradient are both continuous at r/rc = 1.
In contrast, if s < 1, though wD (r) is still continuous, its
gradient is not continuous at r/rc = 1.

The random fluctuation force, FR
i j , acts to heat up the sys-

tem, whereas the dissipative force, FD
i j , acts to reduce the rel-

ative velocity of the particles, thus removing kinetic energy
and cooling down the system. Consequently, the fluctuating
and dissipative forces act together to maintain an essentially
constant temperature with small fluctuations about the nom-
inal temperature T . Therefore, dissipative particle dynamics
simulations are essentially thermostatted molecular dynam-
ics simulations with soft particle–particle interactions.

2.3 Time Integration

The time integration algorithm is very important in DPD.
Poor integration algorithms lead to serious problems such as
equilibrium properties that depend on the magnitude of the
time step. Early implementations of Eq. (1) in DPD made
use of the Euler scheme

ri (t + �t) = ri (t) + �tvi (t)

vi (t + �t) = vi (t) + �tfi (t) (9)

fi (t + �t) = fi (ri (t + �t), vi (t + �t)),

where �t is the time step. The Euler scheme is not time
reversible and it can lead to an energy drift in the system and
hence it has been avoided in recent DPD research. Groot and
Warren [61] used a modified version of the velocity-Verlet
algorithm

ri (t + �t) = ri (t) + �tvi (t) + 1

2
(�t)2fi (t)

ṽi (t + �t) = vi (t) + λ�tfi (t) (10)

fi (t + �t) = fi (ri (t + �t), ṽi (t + �t))

vi (t + �t) = vi (t) + 1

2
�t (fi (t) + fi (t + �t)),

where ṽi (t + �t) is the prediction of the velocity at time
t + �t and λ is an empirically introduced parameter, which
accounts for the effects of stochastic interactions. In this time
integration algorithm, the velocity is first predicted to obtain
the force and then corrected in the last step while the force
is calculated only once during each integration step. It is
found that for a velocity independent total force, the stan-
dard velocity-Verlet algorithm can be recovered at λ = 1/2
Groot and Warren reported that when simulating an equilib-
rium system with ρ = 3.0 and σ = 3.0, the optimum value
of λ is 0.65, which can lead to a considerable large time step
to �t = 0.06 without losing temperature balance [61].

Pagonabarraga et al. [69] proposed a leap-frog scheme
which is self-consistent and can recover the correct equilib-
rium properties but needs iteration at each time step.

2.4 Stress Tensor

After obtaining the positions, velocities and forces on all
DPD particles, the stress tensor, S, is then calculated using
the Irving–Kirkwood model [70] expressed by the equation

S = − 1

V

⎡

⎣
∑

i

uiui + 1

2

∑

i �= j

ri jFi j

⎤

⎦ , (11)

where V is volume and it is the reciprocal of the number den-
sity (n) of particles, ui = vi − v̄(r) is the peculiar velocity of
particle i, v̄(r) is the stream velocity at position x. The first
term in the brackets is the kinetic (ideal gas) contribution
describing momentum transfer and the second term is the
contribution from the particle–particle interactions (or inter-
particle force). Just as expressed in Eq. (2), for simple DPD
particles, the inter-particle force is the summation of conser-
vative, dissipative and random force. For particles acting as
a bead of molecular chains, the inter-particle force should
include the total spring force on the particle.
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The pressure, p, is obtained from the trace of the stress
tensor,

p = −1

3
trS. (12)

2.5 Determination of Coefficients

The selection of coefficients in the DPD formulation directly
influences the properties of the modeled DPD fluid (simu-
lated properties). In order to match the simulated properties
to the real properties and to maintain computational accu-
racy, parameters in DPD simulation need to be carefully
chosen. Some coefficients can be determined by fitting the
relevant data of the real fluid, some are selected to maintain
the numerical accuracy in simulating simple cases with ana-
lytical solutions (e.g., Poiseuille flow). For complex system,
just as pointed out by Fan et al. [68], there is no solid physical
basis to determine the coefficients characterizing interaction
strengths between different components.

2.5.1 Coefficients of Dissipative and Random Force

The coefficients of dissipative and random force (γ and σ ) are
co-related by fluctuation-dissipation theorem, as expressed
in Eq. (7). Therefore there is only one independent coef-
ficient, and also the coefficient is closely related to noise
amplitude of system temperature. Groot and Warren [61]
ever tested the uniformly distributed random numbers and
Gaussian distributed random numbers of the same variance
and they found that there is no statistical difference between
these two approaches. For temperature noise generated with
uniformly distributed random numbers, increasing σ beyond
8 can lead to rapidly growing temperature and unstable sim-
ulation. Taking σ = 3 with suitable parameters in the time
integration algorithm (e.g., for the modified version of the
velocity-Verlet algorithm expressed in Eq. (10), λ = 0.5 and
�t = 0.04) is usually a recommended value to get a reason-
able balance between fast temperature equilibration, a fast
simulation and a stable, physically meaningful system.

2.5.2 Time Step

It is found by Groot and Warren that, for the modified ver-
sion of the velocity-Verlet algorithm expressed in Eq. (10),
stable temperature control is obtained only when the term
1
2 (�t)2 fi (t) is included in the position update [61]. If this
term is omitted, the simulation results are nearly as bad as the
Euler algorithm. Empirically adjusting λ for a given system
(with specific ρ and σ) can lead to a big time step without
significant loss of temperature control. Groot and Warren
reported that for a system with ρ = 3 and σ = 3 and an
optimum value of λ = 0.65, the time step can be increased
to �t = 0.06 [61].

2.5.3 Repulsion Parameter

The repulsion parameter (a) for the conservative force (see
Eq. 3) can be determined through matching the compressibil-
ity of the model fluid with real fluid. Groot and Warren found
that for sufficiently high density (ρ > 2), a good approxi-
mation for pressure can be expressed as [61]

p = ρkBT + αaρ2, (13)

where α = 0.101 ± 0.001.
As the compressibility for a fluid can be expressed as

κ−1 = 1

kBT

(
∂p

∂ρ

)

T
, (14)

it can be further written as

κ−1 = 1 + 2αaρ

kBT
, (15)

As the known compressibility of water under room temper-
ature is approximately 16, it is found that a = 75kBT /ρ.
Therefore for a given DPD system with specific tempera-
ture and density, the repulsion factor can be determined. For
example, if kBT = 1 and ρ = 3, the repulsion parameter
(for DPD fluid mimicking the behavior of water) a = 25.

It should be noted that repulsion parameter a for parti-
cles from different fluids can be different. For example, for
particle interactions from the same kind of fluid A or B, the
repulsion parameter aAA may or may not equal aBB . Again
for particle interactions from two different fluids A or B, aAB
(or aBA, where aBA = aAB) may also be different from aAA
and aBB and in many cases, aAB can be taken as

√
aAAaBB .

The different repulsion parameter can lead to different behav-
ior of two fluids as in mixture or phase separation [61,71].

Also in DPD simulation, the interaction of fluid particles
with particles from solid obstacles (solid particles) are nec-
essary. However, there is no physical base on how the solid
particles interact with each other, and interact with fluid par-
ticles. By taking a repulsion factor between solid particles
(aww or aw, where w means wall) different from that between
fluid particles (a f f or a f , where f means fluid), it is feasi-
ble to get different repulsion factor between fluid and solid
particles, aw f . The interaction behavior thus can be quite dif-
ferent. For example, when modeling two-phase flow in micro
channel or fractures, it is found that gradually increasing the
ratio of aw to a f from 0 can lead to different wetting behav-
ior from strong non-wetting to moderate non-wetting, weak
wetting, moderate wetting, strong wetting effects, and even
film flows [72].

2.6 Computational Procedure

DPD method is a coarse-grained molecular dynamics method,
and its computational implementation is also similar to that
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Evaluate desired physical quantities and 
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Complete the DPD simulation
Save final data

Solve equations of motion for all 
particles over a short time

Fig. 2 Computational procedure of a DPD simulation

in the classic MD. Figure 2 shows a typical computational
procedure of a DPD simulation. As shown in Fig. 2, there are
basically sequential stages: initialization, force computation,
time integration and data analysis.

1. Initialization For the first run of a DPD simulation, it is
necessary to initialize the coordinates of the DPD par-
ticles, their velocities and the target temperature for the
simulation. Typically the DPD particles can be initially
placed in a regular lattice spaced to give the desired den-
sity. They can also be injected into the computational
domain according to a specific number density. The ini-
tial velocities are assigned with random directions and
a fixed magnitude. It is preferred to initialize the veloc-
ity with appropriate Maxwell–Boltzman distribution for
the specified temperature. However, a rapid equilibration
renders the careful fabrication of a Maxwell–Boltzman
distribution unnecessary. Initialization of DPD particle
velocities is subjected to a number of conditions. For
example, there is no overall momentum in any Cartesian
direction, and the total kinetic energy is appropriate to
the temperature specified.

2. Force computation In this stage, forces including the con-
servative force, dissipative force and random force are
computed according to Eqs. (2)–(5). External forces such
as the gravitational force can also be computed according
to the specific physics.

3. Time integration After getting the forces, it is then pos-
sible to update the positions and velocities of all DPD
particles according to a specific time integration algo-
rithm.

4. Data analysis In this stage, desired physical quantities
such as stress can be evaluated, and the trajectory data is
then saved.

3 Numerical Aspects

3.1 Assessment of Dynamic Properties

Assume the radial pair distribution function, g(r) ≈ 1.0, it is
possible to derive the dynamic properties such as viscosity,
diffusivity, and Schmidt number [61,68]. For a dissipative
particle system with weight function expressed in Eq. (8) for
the dissipative and random force, the dissipative viscosity
can be expressed as a function of s as follows

ηD = 2πγρ2r5
c

15

(
1

s + 1
− 4

s + 2
+ 6

s + 3
− 4

s + 4
+ 1

s + 5

)
.

(16)

It is noted that due to the soft interaction between DPD parti-
cles, the speed of momentum transfer is slow, and has the
same order as the speed of particle diffusion. Therefore,
the Schmidt number (Sc), defined as the rate of the speed
of momentum transfer to the speed of particle diffusion, is
about unity, which is much lower than O(103) in a real fluid.
For a typical DPD system, the dynamic viscosity is around
10−4 cP, which is also much lower than approximately 1 cP in
real fluid. Therefore increasing the dynamic properties such
as the Schmidt number and viscosity is usually necessary.

Figure 3 shows the influence of s on the dissipative vis-
cosity. It is clear that reducing s can lead to considerably
increasing viscosity. Table 1 shows the dynamic properties
for a DPD system with s = 1/2, s = 1 and s = 2.0. It is
found that different s can lead to different dynamic proper-
ties. For example, for a given DPD system, the dynamic vis-
cosity obtained with s = 1/2 is around 8 times the dynamic
viscosity obtained with s = 2.0, and the Schmidt number
is increased around 35.5 times when reducing s from 2.0 to
1/2. Therefore reducing the exponential factor s is an effec-
tive way to improve dynamic properties of the system with
the same computational requirement.

Another approach to modify the dynamic properties of a
DPD system is to change rc (cut-off distance for the dissi-
pative, as expressed in Eq. (8)) and γ (strength coefficient
for the dissipative force as expressed in Eq. (4)), as the
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Fig. 3 Viscosity as a function of s

dynamic properties is dependent on rc and γ . Increasing γ

can result in larger fluctuation of thermal energy and requires
good control of system temperature. Increasing rc is thus the
most effective and easiest way to reduce the diffusivity and
increase the dynamic viscosity and Schmidt number of the
DPD system. However, increasing rc means enlarged com-
putational cost. Therefore combining the modified weighting
function and moderately increasing the cutoff radius for dis-
sipative weighting function can enhance the dynamic viscos-
ity and Schmidt number with reasonable computation costs.
For example, for a DPD system with γ = 4.5, ρ = 4.0 and
kBT = 1.0, the influence of rc on the viscosity and Schmidt
number for s = 0.5, 1 and 2 are shown on Figs. 4 and 5. It is
clear that increasing rc can produce larger dynamic viscosity
and Schmidt number. When s = 0.5 and rc = 1.88, Sc can
reach about 1,000, which is of the same order as the Schmidt
number of real fluid. In MD-like simulations, rc = 2.0 ∼ 2.5
is found to be satisfactory [68].

3.2 Solid Boundary Treatment

Just as in other CFD problems, solid boundary treatment is
very important in DPD. To model the interaction between
fluids and solid walls, both fluids and solid walls can be rep-
resented by DPD particles, which can be referred to as fluid
particles and solid particles respectively. In DPD, a good solid
boundary treatment algorithm should satisfy three require-
ments, (1) the fluid particles should not penetrate the solid
walls unphysically, (2) there should not be large oscillation
of physical variables in the boundary area, and (3) slip or no-
slip boundary condition should be well implemented, either
for fixed solid wall or moving solid obstacles [73,74].
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3.2.1 Reflection

During the simulation, some of the mobile particles that are
used to represent the fluid(s) may penetrate into the wall
particles because of the soft interaction between the DPD
particles. In order to avoid such unrealistic penetration, one
possible solution is to use a higher particle density for the
walls or a larger repulsive force between the wall particles
and fluid particles. This may cause large density oscillation
in the boundary area.

Table 1 Dynamic properties for
DPD systems Properties Conventional (s = 2) Modified (s = 1) Modified (s = 1/2)

Diffusivity, D 45kBT
2πγρr3

c

9kBT
πγρr3

c

315kBT
64πγρr3

c

Viscosity, η
ρD
2 + 2πγρ2r5

c
1575

ρD
2 + πγρ2r5

c
225

ρD
2 + 512πγρ2r5

c
51975

Schmidt number, Sc 1
2 +

(
2πγρr4

c
)2

70875kBT
1
2 +

(
πγρr4

c
)2

2025kBT
1
2 +

(
2πγρr4

c
)2

1999kBT
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Fig. 6 Illustration of the treatment of solid obstacles. a The cells in
the entire computational domain are first labeled, “0” for fluid (void)
cells and “1” for solid (obstacle) cells, b after equilibration, the DPD

particles in the obstacle cells are frozen. c Only the frozen particles that
are close to the fluid cells (within 1 DPD unit) are retained as boundary
DPD particles (from [76])

Another frequently used approach in preventing unphysi-
cal penetration is based on reflection, in addition to the inter-
actions between fluid and wall particles. Revenga et al. [73]
investigated three different reflection models:

(a) specular reflection in which only the normal velocity
component is reversed and the tangential velocity keeps
unchanged (and therefore leading to free slip condition),

(b) bounce-back reflection in which all velocity components
are reversed (same magnitude and opposite direction,
and therefore leading to no-slip condition) and

(c) Maxwellian reflection in which particles are reflected
back into the system according to Maxwell distribution.

It is noted that when implementing the Maxwell distribu-
tion, the velocities of particles that enter a thin layer next to
the wall are selected randomly from the Maxwell distribution
at temperature T (thermal condition), with a zero mean cor-
responding to the zero fluid velocity at the boundary (no-slip
condition). The velocity components can be reversed if the
velocity points outward from the bulk fluid [68].

The treatment of solid boundaries by using frozen bound-
ary particles and a thin reflecting boundary layer was found to
be an effective way of implementing no-slip boundary con-
ditions [68,75]. The thickness of the thin layer is selected
to ensure that the probability of penetration is very low but
the reflective layer occupies as little as possible of the fluid
domain. In general, a thickness of 0.1 DPD unit is prefer-
able for most applications. This thickness is small com-
pared with the size of the fluid domain so it does not affect
the bulk flow and it allows the fluid and wall particles to
interact strongly enough to control the wetting behavior.
On the other hand, it is large enough to prevent unphys-
ical penetration. The implementation of no-slip boundary
conditions with frozen wall particles and a thin boundary
layer was found to be very flexible, especially for problems
with complex geometries such as flow through porous media
[76]).

3.2.2 Representation of Solid Grains

In DPD simulations, the effects of solid walls are usually
simulated by using fixed particles to represent the solid
matrix near to the solid–fluid interface. In the implemen-
tation, the entire computational domain can be discretized
using a ‘shadow’ grid and grid cells are labeled “0” for
regions occupied by pore spaces and “1” for solid filled
regions (Fig. 6a). This simple identification of fluid and solid
cells can be used to represent any arbitrary pore geometries
including those determined from high-resolution X-ray and
NMR tomography. The unit vectors normal to the solid–fluid
interfaces, which define the local orientation of the inter-
face, can be obtained by simply calculating the surface gra-
dient from the indicator numbers (0 for liquid regions and
1 for solid regions). At the beginning of each DPD simu-
lation, the particles are initialized and positioned randomly
within the entire computational domain until a pre-defined
particle number density is reached, and the system is then
run to equilibrium using a DPD simulation with repulsive
particle–particle interactions. The particles within the solid
cells (marked as “1”) are then ‘frozen’ (their positions are
fixed) to represent the solid grains (Fig. 6b). The solid grains
in porous media can occupy a considerable fraction of the
entire computational domain, and hence the number of frozen
particles representing the solids can be very large, particu-
larly for low porosity media. Most of the frozen particles
inside the solid grains are more than 1 DPD unit (or) away
from the adjacent fluid cells. These particles do not contribute
to the solid–fluid interactions and consequently they have
no influence on the movement of the mobile DPD particles
within the fluid cells. Therefore, only the frozen particles that
are within 1 DPD unit (or) from the solid–fluid interface are
retained as boundary DPD particles (Fig. 6c), and the rest of
the particles further inside the solid grains are removed from
the model domain. Figures 7 and 8 respectively show the
representation of solid grains in a porous media and fracture
network with frozen DPD particles within 1 DPD unit away
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Fig. 7 Representation of solid
grains in a porous media with
frozen DPD particles within 1
DPD unit away from the
adjacent fluid cells

Fig. 8 Representation of solid
grains in a fracture network with
frozen DPD particles within 1
DPD unit away from the
adjacent fluid cells

from the adjacent fluid cells. It is clear that this treatment
of solid grains is convenient to implement and suitable for
arbitrary complex geometries.

3.2.3 Implementing Solid Boundary Condition

By using the above approach in representing solid grains and
a suitable reflective model within a thin reflective boundary
layer (see Fig. 9), it is possible to implement solid boundary
conditions, either no-slip or slip. It is noted that this treatment
of solid boundaries with frozen DPD particles within 1 DPD
unit away from the adjacent fluid cells, and a thin reflective
boundary layer in the fluid domain is effective in modeling
complex solid obstacles, either fixed or movable [76].

3.3 Conservative Interaction Potential

3.3.1 Constructing Conservative Interaction Potential

In conventional DPD implementations, a conservative force
weighting function in a simple form wC (r) = 1 − r with a
cutoff distance of rc (=1.0) has been used. Because the fluid
generated by DPD simulations with this purely repulsive con-

servative force is a gas, it cannot be used to simulate the flow
of liquids with free surfaces, the behavior of bubbly liquids,
droplet dynamics and other important multiphase fluid flow
processes. A direct solution of this problem is to include a
long-range attractive component in wC (r). Like the repulsive
component, the attractive component should also be a soft
interaction to retain the advantages of the DPD method, and
at short particle separations the repulsive component should
be strong enough, relative to the attractive component to pre-
vent the particle density from becoming too high. Moreover,
the magnitude of the conservative force weight function and
the location of the transition point from repulsion to attraction
should be easily adjustable to allow the behavior of different
fluids to be simulated.

Based on such considerations, Warren developed a many-
body DPD (MDPD) for modeling vapor–liquid co-existing
problems [77]. In MDPD, the conservative force can be
expressed as

FC
i j = aA

i jw
A(r)r̂i j + bRi jw

R(r)r̂i j , (17)

where the first term in Eq. (17) is the attractive force between
particles i and j , and the second term is the repulsive force
between particles i and j . wA(r) and wR(r) stand for con-
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Fig. 9 Illustration of
implementing solid boundary
condition

servative weight functions with different cut-off distance rA
and rR for the attractive and repulsive force between interact-
ing DPD particles. aA

i j and aR
i j are the corresponding strength

coefficients for attraction and repulsion.
It is possible to construct polynomials that include both

short-range repulsion and long-range attraction with a sin-
gle cutoff distance [78]. Another approach is to combine
commonly used SPH smoothing functions with different
interaction strengths and cutoff distances to construct a
particle–particle interaction potential. The most commonly
used smoothing function in SPH [78] is the cubic spline,

W (r)=W (r, rc)=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

1 − 3
2

(
2r
rc

)2 + 3
4

(
2r
rc

)3
0 ≤ 2r

rc
<1

1
4

(
2 −

(
2r
rc

))3
1≤ 2r

rc
< 2

0 2r
rc

≥ 2,

,

(18)

where rc is the cutoff distance (corresponding to the smooth-
ing length, h, in SPH) of the smoothing function. For the
cubic spline function, rc = 2h. In SPH, the function W (r)
in Eq. (18) is multiplied by a coefficient, C , so that the nor-
malization requirement is satisfied [78]. The normalization
coefficient, C , has values of 2/3h, 10/7πh2 and 1/πh3 in
the one-, two- and three-dimensional space. The cubic spline
function defined in Eq. (18) is a non-negative, monotonically
decreasing function, and it is smooth at both the origin and
the cutoff.

One way of obtaining particle–particle interactions with
the required short-range repulsive and long-range attractive
form is to use a sum of spline functions multiplied by an
interaction strength coefficient a,

U (r) = a (AW1(r) − BW2(r)) = a (AW1(r, rc1)

−BW2(r, rc2)) , (19)

to define the particle–particle interaction potentials, where
W1(r) is a cubic spline with a cutoff length of rc1, A is the
coefficient for W1(r),W2(r) is a cubic spline with a cutoff
length of rc2 and B is the coefficient for W2(r). W1(r) and
W2(r) are non-normalized shape functions given in Eq. (18).
The DPD conservative particle–particle interaction forces are
given by

FC
i j = −dU (r)

dr
r̂i j . (20)

In DPD simulations, all particle–particle interaction poten-
tials can have the same shapes with different interaction
strengths for different particle–particle interactions. For
example for fluid 1, the particle–particle potentials are
defined by

U11(r) = a11 (AW1(r, rc1) − BW2(r, rc2)) . (21)

If a second fluid component is present, then the particle–
particle interactions for that fluid are given by

U22(r) = a22 (AW1(r, rc1) − BW2(r, rc2)) , (22)

and the interactions between pairs of particles representing
different fluids are given by

U12(r) = U21(r) = a12 (AW1(r, rc1) − BW2(r, rc2)) . (23)

In Eqs. (21)–(23), ai j is the interaction strength between two
particles representing component i and component j respec-
tively.

A variety of functions can be obtained by using dif-
ferent combinations of A, rc1, B, rc2. For example, taking
A = 2.0, rc1 = 0.8 and B = 1.0, rc2 = 1.0, and a = 1 (see
Eq. 19), a function with positive and negative components
is obtained. AW1(r),−BW2(r), and the resulting function
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Fig. 10 Construction of a particle–particle interaction potential,U (r),
that is repulsive at short distances, attractive at intermediate distances
and zero at large particle separation, from two cubic spline functions,
AW1(r) and BW2(r) (from [71])

U (r) = AW1(r) − BW2(r) is shown in Fig. 10. The figure
shows that the function U (r) is positive at the origin, grad-
ually decreases, and then becomes negative at r = 0.4529.
After reaching a minimum, U (r) begins to increase until
U (r) = 0 at r = 1.0. U (r) is smooth at the origin and at
the point r = 1.0. If A = 1.0, rc1 = 1.0 and B = 0.0, the
resulting function U (r) is the cubic spline expressed in Eq.
(18), which is non-negative everywhere (see Fig. 11).

The spline function W (r) describes a purely repulsive
interaction and its negative counterpart −W (r) describes a
purely attractive interaction. The parameters A and B can
be regarded as the strengths of the repulsive and attractive
interactions. Different interaction strengths with correspond-
ing cutoff distances generate different potential functions,
U (r), and corresponding weight functions, wC (= −U ′(r)),
which can be used to simulate different phenomena. The two
SPH cubic spline potential functions U (r) = 2W1(r, 0.8) −
W2(r, 1.0) (obtained by using A = 2.0, rc1 = 0.8, B = 1.0
and rc2 = 1.0, anda = 1.0) andU (r) = W1(r, 1.0)(obtained
by using A = 1.0, rc1 = 1.0, B = 0.0 and rc2 = 1.0) as
well as the conventional potential function 0.5 − (r − 0.5r2)

(corresponding to the conventional weight function 1 − r )
are shown in Fig. 11. The corresponding conservative force
weight functions (or shape functions) are shown in Fig. 12.

Figure 12 shows that the conventional DPD conservative
force weight function is non-negative and describes a purely
repulsive interaction. Similarly the weight function obtained
using A = 1.0, rc1 = 1.0 and B = 0.0 is also a purely
repulsive non-negative function. While the weight function
resulting from using A = 2.0, rc1 = 0.8, B = 1.0 and rc2 =
1.0 is a function with positive and negative sections, which
corresponds to an interaction with short-range repulsive and

Fig. 11 Cubic spline potential functions, U (r) = W1(r, 1.0),U (r) =
2W1(r, 0.8)−W2(r, 1.0) and the conventional DPD potential function,
U (r) = 0.5 − (

r − 0.5r2
)

(from [71])

Fig. 12 Cubic spline conservative force weight functions and the con-
ventional DPD conservative force weight function (from [71])

long-range attractive characteristics. The conventional DPD
weight function is a monotonically decreasing function of the
inter-particle separation with a constant negative (repulsive)
slope whereas the new weight functions have regions with
both positive (attractive) and negative slopes. Moreover, the
derivatives of the new weight functions are smoother than
the standard DPD weight functions.

Comparing Eqs. (17) and (19), it is found that Liu’s
approach is actually is equivalent to MDPD. In both
approaches, the conservative force is divided into two com-
ponents of attraction and repulsion. The attractive force and
repulsive force between two interacting particles are asso-
ciated with different cut-off distances and different strength
coefficients for modeling the properties of different fluids.
Different from MDPD, in which the basic form of conserv-
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ative weight function is of the conventional form (wC (r) =
1 − r), Liu’s modified DPD approaches can use different
polynomials (including the linear polynomial 1 − r ) to con-
struct the interaction potential (or weight function).

3.3.2 Pressure–Density Relation

The combination of the attractive and repulsive interactions
in the cubic spline potential makes it possible to simulate
systems with co-existing liquid and gas phases and liquid–
gas phase transitions. For a DPD system with attractive and
repulsive interactions, the pressure–density relation can be
numerically calculated. The fluid pressure can be calculated
as a function of density from the particle–particle interactions
using the virial theorem to obtain a numerical equation of
state [25,26]. Because the random and dissipative forces have
average values of zero, they do not contribute to the virial
pressure [61], and the total pressure is given by

P = Pk + ρ

3

∑

j<i

(ri − r j ) · FC
i j , (24)

where Pk is the kinetic contribution (Pk = ρkBT , where ρ is
the fluid density).

The van der Waals (vdW) equation of state can also be
used to model co-existing liquid and gas phases and liquid–
gas phase transitions. The formulation of the van der Waals
equation was motivated by the idea that short range repulsive
forces lead to an effective volume for the gas molecules,
which reduces the average free volume per molecule from v

to v − b̄ and long range attractive forces reduces the pressure
from kBT/(v − b) to kBT/(v − b) − a/v2. The resulting
equation, (p+ ā/v2)(v − b̄) = kBT , provides a quantitative
model for the phase behavior of simple fluids. In particular,
for van der Waals fluids (model fluids described by the van
der Waals equation) gas and liquid phases may coexist in
a non-zero region of the (p, v, T ) or (p, ρ, T ) parameter
space (depending on the coefficients ā and b̄) where ρ is the
average fluid density. The van der Waals fluid is the classic
example of a fluid with co-existing liquid and gas phases and
liquid–gas phase transitions. The equation of state for a van
der Waals fluid can be expressed in the form [79]

p = ρkBT

1 − ρb̄
− āρ2, (25)

where ā controls the strength of the attractive force, and b̄
is related to the size of the particle. This equation of state
can be obtained from the macroscopic free energy density
for interacting particles with short range repulsive interac-
tions and long range attractive interactions in the mean field
(infinite interaction range) limit [80]. Giving ā and b̄, it is
easy to plot the pressure–density relation for a constant tem-

Fig. 13 Pressure–density relations for a van der Waals fluid with b̄ =
0.016, ā = 1.9b, and a DPD fluid with A = 2.0, rc1 = 0.8, B =
0.95, rc2 = 1.0. The temperatures are kBT = 1, and kBT = 0.54
respectively (from [71])

perature. Figure 13 shows the pressure–density relations for
a van der Waals fluid with b̄ = 0.016 and ā = 1.9b while the
temperatures are kBT = 1 and kBT = 0.54 respectively.

The pressure–density–temperature relationship for a wide
range of fluids can be represented quite well by a van der
Waals equation of state over a limited part of the parameter
space. By tuning the parameters ā and b̄, it is possible to
obtain a van der Waals equation of state for DPD fluids. Fig-
ure 13 shows the pressures calculated at a number of densities
for a DPD fluid with A = 2.0, rc1 = 0.8, B = 0.95, rc2 =
1.0, and for kBT = 1 and kBT = 0.54. The simulations were
implemented by placing different number of DPD particles
into a box of size 10 × 10 × 10 with periodic boundary con-
ditions in all three directions to model the effects of different
global densities, ρ = n/1,000. The averaged total pressure
was calculated using the virial theorem relationship given in
Eq. (24). The pressure calculated for the DPD fluid at differ-
ent densities can be represented well by the van der Waals
equation, as Fig. 13 shows.

3.4 Spring-Bead Chain Models

In the DPD model, a macromolecule chain can be represented
by a chain of particles (beads) connected by springs. Simi-
lar to fluid particles (for modeling simple fluids) that can be
thought of as a small regions of fluid, the macromolecule
beads can be regarded as polymeric chain segments con-
sisting of number of monomeric units. The macromolecule
beads exchange momentum with each other according to the
spring force and other ordinary DPD interactions. Hydrody-
namic and thermodynamic interactions between the macro-
molecule and solvent then emerge naturally in these simu-
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lations. Numerous simulations have verified that the DPD
model can capture many essential physical phenomena of
the macromolecule systems.

A number of spring-bead chain models have been used
in polymer rheology as the coarse-grained models of macro-
molecules. Typical of them are the worm-like chain (WLC)
model and finitely extendable nonlinear elastic (FENE)
model. In the WLC model, the spring force law of a wormlike
chain segment can be expressed as

FS
i j = − kBT

4λ
e f f
p

[(
1 − ri j

l

)−2 + 4ri j
l

− 1

]
r̂i j , (26)

where l is the maximum length of one chain segment and
λ
e f f
p is the effective persistence length of the chain. If the total

length of the chain is L and the number of bead in the chain
is Nb, l = L/ (Nb − 1). It was found that the mechanical
properties of DNA molecules in an aqueous solution can
realistically be modeled by the wormlike chains [81,82].

The spring force law of a FENE chain segment can be
expressed as the following equation

FS
i j = − Hri j

1 − (
ri j/rm

)2 , (27)

where H is the spring constant. rm is the maximum length
of one FENE chain segment. From Eq. (27), we can see that
the spring force increases intensely and approaches infinity
when ri j/rm approaches 1. As a result, the distance between
two neighboring beads in FENE chain should be less than
rm .

4 Applications

Like other Lagrangian particle based methods such as SPH,
DPD models have special advantages over the traditional grid
based methods in modeling fluid flow in domains with com-
plex solid boundaries. They do not require explicit and com-
plicated interface tracking algorithms, and thus there is no
need to explicitly track the material interfaces, and processes
such as fluid fragmentation and coalescence can be handled
without difficulty. The effectiveness of DPD in modeling
complex physics and reproducing the continuum hydrody-
namic behavior has been demonstrated in various applica-
tions [59,75,83]. It is noted that a DPD model should con-
form to the Navier–Stokes equations on scales that are large
enough for hydrodynamic (continuum) concepts to be valid
(on scales large enough for the effects of both the mean free
path of discrete particles and their thermal fluctuations to
be negligible), providing that the time step in the integration
scheme is small enough to ensure accurate integration [60]. A
number of previous investigations have shown that the results
obtained from DPD simulations are in good agreement with

the flow behaviour predicted by the Navier–Stokes equations
for a variety of fluid flows [71,75].

As a coarse-grained molecular dynamics method, DPD is
attractive in modeling the hydrodynamic behavior of meso-
scopic complex fluids. Therefore, since its invention, the
DPD method has been extended to many applications includ-
ing colloidal suspensions [84], surfactants [85], dilute poly-
mer solutions [86], biological membranes [87], macromole-
cular dynamics [75,88] and many others [9]. Most of the ear-
lier applications focus on the equilibration process of com-
plex fluids including the aggregation of polymer and surfac-
tant, the mixture or phase separation and morphology evo-
lution of complex fluids with multi-components or multi-
phases. Recently DPD method is popular in modeling the
dynamic flow process of mesoscopic complex fluids includ-
ing liquid drop dynamics (drop formation, oscillation, coa-
lescence, collision, impacting, and spreading) and the satu-
rated or unsaturated flows in mesoscopic structures (micro-
channels, fractures and porous media).

Here we concentrate on the following areas

• multiphase drop dynamics
• multiphase flow in micro-channels and fractures
• movement and suspension of macromolecules
• movement and deformation of a single cell

4.1 Micro Drop Dynamics

Characterization of fluid flows in microfluidic devices has
increasingly becoming a very important topic since the fluidic
behavior in MEMS is very different from what observed in
daily life. Flows in microfluidic devices usually involve small
or ignorable inertial force, but dominant viscous, electro-
kinetic and surface effects especially when the surface-to-
volume ratio increases [89]. Analytical or semi-analytical
solutions for microfluidics are generally limited to a very
few simple cases, whereas experimental studies are usu-
ally expensive. Numerical simulation of flows in microflu-
idic devices, as an effective alternate, has been attracting
more and more researchers. However, simulation of microflu-
idic devices is not easy due to the involved complex fea-
tures including movable boundaries (free surfaces and mov-
ing interfaces), large surface-to-volume ratio, and phenom-
ena due to microscale physics. Numerical studies with reli-
able models are needed to develop a better understanding
of the temporal and spatial dynamics of multiphase flows in
microfluidic devices.

Drop formation and break-up in micro/nano scales are fun-
damentally important to diverse practical engineering appli-
cations such as ink-jet printing, DNA and protein micro-
/nano-arraying, and fabrication of particles and capsules
for controlled release of medicines. Numerical studies pro-
vide an effective tool to improve better understanding of the
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inherent physical dynamics of drop formation and breakup.
Computational models for drop formation and breakup in
micro/nano-scales must be able to handle movable bound-
aries such as free surfaces and moving interfaces, large
density ratios, and large viscosity ratios. These require-
ments together with microscale phenomena and possible
complex boundaries (fluid–fluid–solid contact line dynamics
and fluid–fluid interface dynamics) in microfluidic devices
present severe challenges to conventional Eulerian-grid-
based numerical methods such as finite difference meth-
ods and finite volume methods which require special algo-
rithms to treat and track the interfaces. Algorithms based on
Lagrangian-grid-based methods such as finite element meth-
ods have been shown to agree quantitatively with experimen-
tal measurements, but they are only capable of modeling the
dynamics of formation of a single drop or the dynamics until
the occurrence of the first singularity.

Some researchers have simulated drop dynamics for mul-
tiple component systems by using the DPD method with the
conventional weight function for the conservative force [90].
However, the conventional conservative force is able to sim-
ulate liquid–liquid and liquid–solid interfaces for multiple
component systems, but is not able to simulate liquid–gas
interfaces for single component systems. Recently the DPD
method is modified to model the solid–liquid–gas co-existing
systems, either by using the many body DPD approach
developed by Warren [77] or by using a new conservative
interaction potential with long-distance attraction and short-
range repulsion proposed by Liu et al. [71], or by other
approaches which are able to describe the attraction and
repulsion between interacting DPD particles. For example,
Li et al. [91] investigated the 3D flow structures in a moving
droplet on substrate by using the many body DPD, Zhang et
al. [92] studied the movement of a droplet in a grooved chan-
nel by using Liu’s conservative interaction potential. Mer-
abia and Pagonabarraga developed a mesoscopic model for
simulating the dynamics of a non-volatile liquid on a solid
substrate and they analyzed the kinetics of spreading of a
liquid drop wetting a solid substrate and the dewetting of a
liquid fill on a hydrophobic substrate [93]. Based on mean-
field theory, Tiwari and. Abraham proposed a DPD model
for two-phase flows involving liquid and vapor phases [94].
The DPD model is validated by a number of numerical exam-
ples including the small- and large-amplitude oscillations of
liquid drops.

Revisiting the new interaction potential in (19) with long-
distance attraction and short-range repulsion, different para-
meter sets, A, rc1, B and rc2, determine the shape of the
interaction potential, and consequently the behaviour of the
DPD fluid. It is possible to model micro drop dynamics
(drop formation, oscillation, coalescence, collosion, impact-
ing and spreading) with co-existing liquid–vapour phase use
this interaction potential.

Fig. 14 Cubic spline interaction potential functions, U (r) =
2W1(r, 0.8) − BW2(r, 1.0) with different coefficients (from [71])

For example, in a DPD simulation of simple fluids, the
coefficients associated with the fluctuating and dissipative
forces can be a = 18.75, σ = 3.0, and kBT = 1.0(γ = 4.5).
If the parameters for the interaction potential are selected
as A = 2.0, rc1 = 0.8 and rc2 = 1.0, with several val-
ues for B, it is possible to investigate different DPD fluid
behaviours resulted from different attractive effects. The
particle–particle interaction potentials were given byU (r) =
18.75 (2W1(r, 0.8) − BW2(r, 1.0)), which were shown in
Fig. 14. The fluids can demonstrate different behavior with
different B. when B = 0, the interaction potential repre-
sents a repulsive force, which makes the DPD particle to fill
the entire computational domain, as shown in Fig. 15. Since
there is no attractive component in the particle–particle inter-
action, the DPD particles did not separate into liquid and gas
phases, and they did not form a liquid drop (or drops). A
small value of B, corresponding to weak long-range attrac-
tion between the DPD particles is not sufficient to induce
phase separation. When the critical value for B is reached,
at a particular temperature, large density fluctuations will
occur, and an additional small increase in B will lead to slow
phase separation. Figure 16 shows the particle distribution
after equilibration with B = 0.9. The fluid forms a spherical
liquid drop surrounded by dense gas particles. The size of
the spherical liquid drop remained approximately constant,
while the location of the drop centre shifted a little. This
is expected since collisions between ‘gas’ particles and the
drop will induce the drop to undergo Brownian motion, and
combined evaporation and condensation will also result in
random motion of the centre of mass).
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Fig. 15 Particle distribution obtained using the cubic spline potential
U (r) = 37.5W1(r, 0.8) (from [71])

Fig. 16 Particle distribution obtained using the cubic spline potential
U (r) = 18.75(2W1(r, 0.8) − 0.9W2(r, 1.0)) (from [71])

Figure 17 shows the particle distribution after equilibra-
tion using B = 1.0. In this case, the fluid also forms a spher-
ical liquid drop with sparse gas particles surrounding it. The
liquid/gas density ratio is greater than 600. The shape of the
liquid drop was stable, the drop size was almost constant, and
the interface width is roughly equal to the interaction range.
The number of surrounding gas particles was much smaller
than that in the case illustrated in Fig. 16. Further increases in

Fig. 17 Particle distribution obtained using the cubic spline potential
U (r) = 18.75(2W1(r, 0.8) − 1.0W2(r, 1.0)) (from [71])

Fig. 18 Particle distribution obtained using the cubic spline potential
U (r) = 18.75(2W1(r, 0.8) − 1.05W2(r, 1.0)) (from [71])

B result in stronger attractive effects in the interaction. Fig-
ure 18 shows the particle distribution after equilibration from
a simulation with B = 1.05. The bulk fluid forms a stable
spherical liquid drop. In this case the density of the gas is very
small, the number of ‘gas’ particles fluctuates strongly and at
some time there may be no gas particles at all in the relatively
small volume used in this simulation. Additional increases
in B can result in different behaviour. Figure 19 shows the
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Fig. 19 Particle distribution obtained using the cubic spline potential
U (r) = 18.75(2W1(r, 0.8) − 1.1W2(r, 1.0)) (from [71])

particle distribution after equilibration using B = 1.1. The
fluid underwent a phase transition but instead of forming
a single liquid drop surrounding with gas particles, a num-
ber of small droplets formed. This can be expected due to
the stronger particle–particle attraction, which resulted in a
number of small droplets. Eventually a single drop should
be formed by a process similar to Ostwald ripening [95] in
which particles evaporate more rapidly from small droplets
and condense more rapidly on large ones.

4.2 Multiphase Flows in Pore-Scale Fracture Network and
Porous Media

Pore-scale, multiphase fluids in contact with solid surfaces
are important in almost all areas of science and technol-
ogy including nuclear reactor heat exchangers, lubricated
pipeline transport, manufacturing of multilayer films and
fibers, chemical reactors and separators, coating systems,
enhanced oil and gas production, and environmental remedi-
ation [96,97]. They involve complex physics of fluid–fluid–
solid contact line dynamics and wetting behaviors which
are closely related to the inter particle and intra molec-
ular hydrodynamic interactions of the concerned multiple
phase system. For example, unsaturated fractures in the
vadose zone are very important for groundwater recharge,
fluid motion and contaminant transport, and flow through
fractures can lead to exceptionally rapid movement of liq-
uids and associated contaminants [98,99]. The physics of
fluid flows in unsaturated fractures is still poorly understood
due to the complexity of multiple phase flow dynamics.

Experimental studies of fluid flow in fractures are limited
[100]. In computer simulations it is usually difficult to take
into account the fracture surface properties and microscopic
roughness. Predictive numerical models can be divided into
two general classes: volume-averaged continuum models
(such as those based on Richard’s equation) [101] and dis-
crete mechanistic models [102]. Knowledge of the physi-
cal properties of the fluids and the geometry of the frac-
ture apertures is required in both classes. Volume-averaged
continuum models are more suitable for large-scale sys-
tems, and they usually involve the representation of frac-
tures as porous media with porosity and permeability para-
meters adjusted to mimic flow within fractures. However,
volume-averaged continuum models are unable to describe
the details of flow dynamics in fractures, they do not repro-
duce the spatio–temporal complexity of multiphase fluid
flow in fractures, and they often fail to predict the rapid
fluid motion and contaminant transport observed in the frac-
tured vadose zone. Small-scale studies with discrete mech-
anistic models are needed to develop a better understand-
ing of the temporal and spatial dynamics of fracture flows.
However, the complexity of fracture flow dynamics makes
it difficult to develop successful numerical models for fluid
flows in fracture networks. A broadly applicable model
must be able to simulate a variety of phenomena includ-
ing film flow with free surfaces, stable rivulets, snapping
rivulets, fluid fragmentation and coalescence (including coa-
lescence/fragmentation cascades), droplet migration and the
formation of isolated single-phase islands trapped due to
aperture variability.

Realistic mechanistic models for multiphase fracture
flows must be able to handle moving interfaces, large density
ratios (e.g., ≈1,000:1 for water and air), and large viscosity
ratios (e.g., ≈100:1 for water and air). These requirements
combined with the complex geometries of natural fractures
present severe challenges to mechanistic models. Grid-based
numerical methods such as finite difference and finite volume
methods and Eulerian finite element (FE) methods require
special algorithms to treat and track the interface between
different phases. These algorithms are usually complicated
and fall into two general groups, interface tracking and inter-
face capturing. Interface tracking algorithms generally use
marker particles within grid cells intersected by the interface
to identity the locations of interfaces [103,104]. The parti-
cles are then advected with the flow, and the positions of
the interfaces can be determined from the particle positions.
This approach is computationally expensive, especially for
three-dimensional simulations, and often requires additional
interface repairing techniques when the interface topology
changes. Interface capturing algorithms are usually based on
an ‘indicator’ field function with different values for differ-
ent phases. The location of the interface can be determined
from the indicator function, f (x) where x is the position in
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Fig. 20 Sequential images of
fluid motion into a micro
channel network. The 3 figures
in the top row (a–c) show the
DPD simulation snapshots, the 3
figures in the middle row (d–f)
show the VOF simulation
results, and the 3 figures in the
bottom row (g–i) show the
experimental photographs at 3
equivalent stages (from [107])

the D-dimensional computational domain, which may have
a specific value at the interface, or a range of values with a
large gradient near the interface. The evolution of the mov-
ing interface can be obtained from the evolution of the indi-
cator function. The volume of fluid (VOF) approach [105]
is based on an indicator function that specifies how much
fluid of each phase is contained in each of the grid cells. In
the level-set (LS) function approach [106], the interface is a
D−dimensional cut (contour) at f = f O , through the D+1-
dimensional surface f (x). In most implementations, for two
phase systems, f (x), is positive in regions occupied by one
phase, negative in regions occupied by the other, and f O = 0.
The VOF approach is robust and the mass loss/gain during a
simulation is usually well controlled. But the captured inter-
face usually spans several grid cells. In the LS approach, the
interface is more sharply defined, but the loss/gain of mass
during a simulation is larger.

There are a number of works in using the DPD method
to model the multiphase flow in micro-channels or fractures
with surface tension and wetting effects [72,92,107,108].
Figure 20 shows the DPD simulation of multiphase flow
through a channel network together with the numerical study
using a volume of fluid (VOF) method was presented by
Huang et al. [109], and a flow experiment based on the same

channel network fabricated using polymethylmethacrylate.
The flow patterns, penetration depths and formation of a
quasi-steady state flow path during the late stages obtained
from DPD simulation, VOF simulation and experiment are
in general agreeable.

Figure 21 shows the DPD simulation of the infiltration
process, together with numerical results from VOF simula-
tion at four different stages [76]. For all stages, the injected
liquid flows preferentially through the largest pore throats
and through the vertical ‘microfracture’ where the capillary
forces resisting flow are minimal. It is seen that although there
are slight differences between the DPD and VOF simulations
in several of the pore spaces, the overall flow patterns within
the fracture are almost the same. The slight differences in
these pore spaces also originate from the different ways used
to represent obstacles in two approaches. The solid obstacles
are represented using “solid” occupied grid cells in the VOF
model, but they are represented using randomly distributed
frozen particles in the DPD model. This leads to slight dif-
ferences between the flow patterns simulated using the VOF
and DPD models. In general, the visual comparison between
these two simulations clearly reveals that these quite differ-
ent approaches give essentially the same fluid dynamics in
the fractured porous medium.
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Fig. 21 VOF (top) and DPD
(bottom) simulation of
non-wetting fluid infiltration
into a fractured porous medium
at four equivalent stages (from
[76])

4.3 Movement and Suspension of Macromolecules in
Micro-channels

Understanding the dynamic behavior of macromolecules,
such as DNA, is very important for fundamental research and
practical applications in bio, chemical and medical engineer-
ing, especially in designing micro-devices. Recently, micro-
devices enable processing, analyzing, and delivering bio-
chemical materials in a wide range of biomedical and bio-
logical applications [68,110]. For example, micro-needle can
be used to efficiently and precisely deliver a small amount of
drug or DNA into local tissue, skin regions, and even cells.
In order to avoid pain and tissue traumas caused by tradi-
tional technologies of drug injection and delivery, a vari-
ety of micro-needles have been designed for hypodermic
injection and transdermal drug delivery [111,112]. Micro-
channels are the main field to deliver and control injected
materials. By designing optimal structures of micro-channels
or micro-channel networks, it is possible to efficiently con-
trol the injection process, either for simple fluids or complex
fluids with macromolecules. It is therefore very important to
understand the dynamic behavior of macromolecular when
passing though micro-channel with different structures.

Recent development of experimental techniques enables
us to study the dynamics and rheological properties of macro-
molecules such as DNA in micro-channels. For example, it

is possible to use fuorescence imaging techniques to visual-
ize the micro-structural conformations of molecules [113].
Optical tweezers have been used to measure the extension
properties of single DNA molecules [114]. By using these
techniques, some experimental works have been conducted
to study the mechanics of macromolecular suspension flows.
Perkins et al. in 1995 [115] measured the extension proper-
ties of tethered single DNA molecules in a uniform flow.
Perkins et al. in 1997 [116] and Smith and Chu in 1998
studied the dynamic behavior of single DNA molecules in
an elongation flow [117]. Smith et al. in 1999 [6] observed
the dynamic behavior of single DNA molecules in steady
shear flows. The flow of molecular suspensions through a
micro-channel is more complicated as it is a combination of
non-uniform elongation and shear flows. Shrewsbury et al.
used epi-fluorescence microscopy to characterize the flow’s
impact on the conformation of the molecules in microfluidic
devices in which the path consists of a large, inlet reservoir
connected to a long, rectangular channel followed by a large
downstream reservoir [118]. In the device, DNA molecules
were observed to undergo elongation, non-uniform shear and
compression. Near the channel wall, high shear rates results
in dramatic stretching of the molecules, and may also result
in chain scission of the macromolecules.

On the other hand, with the development of computational
methods and computer hardware, numerical simulations of
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the movement and evolution of macromolecules in micro-
devices have been more and more popular. Numerical simu-
lation can provide more details on the flow field and confor-
mations of macromolecules by tracking each molecular chain
segment. The molecular size of macromolecules is usually
in the same order of magnitude as that of the channel and
the equivalent Knudsen number is larger or equal to unity
[68]. This restricts the applicability of continuum mechan-
ics methods to these flow problems. Molecular dynamics has
been used for comparison with worm-like chain [84] and slip
length measurements for sheared films [119]. However, but
the number of beads in MD simulation is usually small and
the time scale is much shorter than the time scale (of the
order of second) that for gathering experimental data [6]. In
addition, the characteristic size of micro-channels and DNA
suspension can range from dozens of nanometers to several
micrometers, and even to several millimeters. For mesoscale
problems, it is expensive for MD to directly simulate the
dynamic behavior of macromolecules in micro-channels.

Compare with molecular dynamics, Monte Carlo relies
on statistical mechanics and it generates states according
to appropriate Boltzmann probabilities, instead of trying to
reproduce the dynamics of a systems. MC can be deal with
problems with larger time and space scales than MD, and it
has been used to simulate DNA flow through entropic trap
array where polymer is modeled by a lattice model with bond
fluctuation [120].

As the size of flow field and DNA molecules can be
too large to be handled by MD simulation, various meso-
scopic methods have been applied in this area. In this area,
the Brownian dynamics simulation (BDS) [121,122] is one
most common approach. As a simplified version of the
Langevin dynamics, Brownian dynamics corresponds to the
limit where no average acceleration takes place during the
simulation run. Various molecular models have been used to
model the DNA molecules, such as the Kramer’s bead-rod
chain [123], the FENE chain [75] and the worm-like chain
in BDS [122]. Among those molecular models in BDS, the
worm-like chain is considered to be the most realistic one
[8], comparing with experimental measurements. Larson et
al. [81] simulated a DNA molecule in an extensional flow, and
Hur et al. in shear flow [122]. Except for simulating single
molecules, Brownian dynamics simulation has widely been
used in simulating the rheological properties of polymer solu-
tions. For example, the simulation of freely-draining flexible
polymers in steady linear flows [124], bead-rod chains in
start-up of extensional flow [123], and relaxation of dilute
polymer solutions following extensional flow [125]. Brown-
ian dynamics simulations have shown a good comparison
[122] with experiments on DNA molecules in shear flow.
However, these models are usually only valid for simple
fluid flow since the flow field has to be specified a-priori in
BDS, such as the above mentioned freely-draining flexible

polymers in steady linear flow, bead-rod chains in start-up
of extensional flow and single DNA molecule in shear flow
[122].

Although there are many other mesoscale simulation
methods, such as Lattice Gas Automata, Lattice Boltzmann,
it is also difficult for those methods to deal with complex flu-
ids and complex flow which may contain macromolecules.
In many recent works, dissipative particle dynamics were
employed to simulate dynamic behavior of macromolecules.
As a mesoscale fluid simulation method, DPD is promis-
ing in simulating macromolecules suspension flow through
micro channels. Macromolecules (such as DNA molecules)
are generally simulated by a series of particles (beads) linked
together using springs to mimic the solute molecules, while
the simple DPD particles are usually used to model the sol-
vent.

One of the first applications of DPD to modeling dilute
polymer solution was presented by Schlijper et al. [86], who
applied the DPD method to investigate the link between
molecular features of polymer molecules and the rheological
properties of dilute polymer solutions. Kong et al investigated
the effect of solvent quality (i.e., good solvent vs. poor sol-
vent) on the conformation and relaxation of polymers [126],
and the DPD method is applied to simulate single chains in
solvents with a range of quality. Groot studied the formation
of a polymer–surfactant complex in bulk solution, and DPD
is used to model a system containing polymer, surfactant
and water [85]. Spenley presented scaling laws for polymer
melts and dilute polymer in DPD system [127]. The polymer
in a good solvent shows satisfactory agreement with scaling
and Kirkwood theory, and the polymer melt is in excellent
agreement with the predictions of Rouse theory. Symeonidis
et al. [128] demonstrated the correct static scaling laws for
the radius of gyration by DPD simulations of several bead-
spring representations of polymer chains in dilute solution.
They found that the worm-like chain simulating single DNA
molecules compares well with average extensions in shear
flow from experiments.

Recently, the dynamics of polymer chain in different flows
and micro-channels (or micro fluidic devices) were con-
ducted. For example, Wijmans and Smit used DPD to simu-
late shear flow between two flat plates and to study the effects
of shear flow on end-tethered polymer layers (“brushes”)
[129]. They found that as the flow velocity changes during
an oscillation cycle, the polymer chains are able to relax
their configurations with respect to the shear rate. Syme-
onidis modeled λ-phage DNA under shear using DPD with
the worm-like chain models [130]. They computed the val-
ues of viscosity, diffusivity and Schmidt number and pre-
sented comparison of wormlike chain models under shear
with experimental and Brownian Dynamics results. Fan et al.
[75] simulated the micro channel flows of macromolecular
suspension while FENE chain is used in the DPD simulation.
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Fig. 22 Conformation evolution of macromolecules passing through a periodic sloping micro-channel at t = 0 (left) and 4,000 (right) with
nChain = 60 and ChainLen = 30 (from [134])

Fig. 23 Snapshot of a long
DNA molecule in a section of
microfluidic sieving channel
subjected to an external electric
field [57]

They also studied the flow of DNA suspension through peri-
odic contraction–diffusion micro-channels and obtain some
typical conformations of macromolecules during evolution
of DNA molecules when passing through the channel [68].
Researchers from the same group also conducted other sim-
ulations using DPD. For example, Chen et al. [131] investi-
gated the steady-state and transient shear flow dynamics of
polymer drops in a micro-channel. Duong-Hong et al. [57]
investigated the Electroosmotic flow (EOF) of thin Debye
layer and DNA molecular in nano-fluidic systems. Pan et
al. [88] simulated DNA separation process through entropic
trapping mechanism with worm-like chain. The simulations
show that longer DNA strands do move faster than shorter
ones, as observed in experiment [132,133]. They confirmed
that the delayed entrance is the cause of entropic trapping
and concluded that the corner trapping is not a contributor to
DNA separation.

Figure 22 shows the conformation evolution of macro-
molecules passing through a periodic sloping micro-channel
at t = 0 (left) and 4,000 (right) with nChain = 60 (num-
ber of macromolecules) and ChainLen = 30 (length of a
macromolecule) [134]. The macromolecules are initialized
in a coiled state. After the flow is fully developed, some
macromolecules are in a fully stretched state, while some are
still in a coiled state. The extension of the macromolecules is
dependent on the slope of the inclined channel. If the slope is
very small, the inclined channel will behave somewhat sim-

ilar to a straight channel, and most macromolecules can be
fully stretched. If the slope is very big, the inclined channel
will behave somewhat similar to square-shaped contraction
channel, and it is not easy for the macromolecules to be fully
stretched.

One of the excellent features of DPD is the convenience
in including additional physics in the model. This section
introduces an example of a DPD model considering the Elec-
troosmotic flow (EOF) effects in the small Debye length limit
in a DNA sieving device. In addition, the “particle” in this
model is a very long NDA molecular chain. The material pre-
sented in here is largely from the work by Duong-Hong et al.
[57]. It is found that the DPD is and effective coarse-grained
model allowing efficient simulation of the hydrodynamics
of microfluidic devices of sizes that are too large to be sim-
ulated by ab initio methods such as Molecular Dynamics,
and too small for continuum models. In this example, EOF
is efficiently generated using the proven similitude between
velocity and electric field under appropriate conditions. The
EOF is generated using an effective boundary condition, akin
to a moving wall, thus avoiding evaluation of the computa-
tionally expensive electrostatic forces.

A DNA sieving device is a channel consisting of a series of
a large number of repetitive shallow and depth sections. The
long DNA molecular chain flows through the channel driven
by the externally applied electric field. Figure 23 shows a
DPD solution of one long DNA molecule position snapshot
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in one sieving section. At the two ends, repetitive periotic
boundary conditions are used. The numerical data obtained
from our model are in very good agreement with theoreti-
cal results. The detailed formulation on this interesting DPD
model, numerical implementation procedure and the para-
meters used in the simulation can be found in [57].

4.4 Movement and Deformation of Single Cells

Dynamical behaviors of migration and deformation varia-
tions of cells in blood vessels are caused by pathological
changes in mechanical properties of cells, which may be
closely related to severe cell diseases. In cancer, the vari-
ations are due to internal factors such as genetic mutation.
While in malaria, the variations are due to external factors
such as parasites and bioactive lipids. Through biochemical
reactions, both internal and external factors can change the
internal structure and mechanical behavior of living cells.
These variations are often facilitated by the altering in the
mechanical behavior of living cells such as large changes
of elastic modulus. For example, Healthy red blood cells
(RBCs) can squeeze through capillaries with smaller diam-
eter than itself to deliver oxygen to various parts of the
body due to its high deformability. While the elastic mod-
ulus of RBCs infected by the protozoan Plasmodium may
increase by more than a factor of 10 due to intracellular
structural changes [135]. The pathological RBCs are too stiff
to deform sufficiently to traverse narrow capillaries. Instead
they may disrupt the blood flow and block the capillaries, pos-
sibly leading to anemia and can even cause death. Modern
physiology and medicine have established the relationship
of mechanical variations between healthy human cells and
pathological cells. For instance, compared to healthy cells,
diseased cells such as cancer cells are known to have dif-
ferent stiffness and elasticity [136]. Such differences could
be used to distinguish between normal and diseased cells
[137,138]. Recently, increased micro-fluidic devices were
designed to diagnose and treat cells disease such as cancer
as difference cells can have different mechanical properties
[139]. It is therefore an important step to understand how
cells with different mechanical properties respond to physi-
cal loads.

Continuum cell models are main approach to model the
mechanic dynamics of cell. The continuum models treat the
cell as comprising materials with certain continuum material
properties. Appropriate constitutive material models and the
associated parameters can derived from experimental obser-
vations [140]. Generally, continuum models can be classified
into two main categories, namely solid models and liquid
drop models. The solid models usually assumed the whole
cell to be homogeneous without considering the distinct cor-
tical layer. By assuming homogeneity, the mechanical para-
meters can be reduced. This greatly simplifies the experimen-

tal data analysis. The corresponding material models can be
incompressible elastic solid (linear elastic solid model) or
the viscoelastic solid (linear viscoelastic solid model). The
homogeneous viscoelastic solid model was first proposed in
1981 [141], which was used to study the human leukocytes
undergoing micropipette aspiration with small-strain defor-
mation. For large cell deformations, this model may not work.
The elastic model is a simplified version of the viscoelas-
tic model, and it neglects the time factor [140]. This model
was used to model endothelial cells in micropipette aspira-
tion [142]. It was found when the pipette radius is very small
compared to the local radius of the cell surface, the cell can be
approximated as an incompressible elastic half-space. Based
on this model, Mijailovich et al. [143] constructed a finite
element model to compute cell deformation during magnetic
bead twisting experiment. Numerical simulations show that
adhesive forces are sufficient to keep the bead firmly attached
to the cell surface throughout the range of working torques.
Practice shows the solid models can usually achieved equi-
librium after certain amount of loading. For instance, even
when the suction pressure greatly exceeded the critical suc-
tion pressure, endothelial cells and chondrocytes were unable
to flow into the pipette [144].

On the other hand, liquid drop models treat the cell as
a liquid drop, which can model large cell deformations.
The Newtonian liquid drop model was developed by Yeung
and Evans in [145] to simulate the flow of cells into the
micropipette. The model describes the cell as a homoge-
neous Newtonian viscous liquid drop enclosed by a cortex
with constant, isotropic tension but without bending resis-
tance [146]. Newtonian liquid drop model can model large
cell deformations well when the progress of cells in micro-
pipette aspiration is slow. However, for a fast period <5 s,
Newtonian liquid drop model could not explain why the cells
would exhibit as a fast elastic recoil, analogous to the ini-
tial rapid entry in the aspiration experiment [146]. In order
to consider the effects of the nucleus on cell deformation,
the compound drop model was developed, which assumed
the nucleus as an encapsulated liquid drop [147]. Compare
with above mentioned Newtonian liquid drop, the compound
drop model can effectively explain the rapid initial response
in micro-pipette aspiration and fast recoil on recovery [148].
The compound drop model was also used to model cell under
shear flow [149] and extensional flows [150], cell adhesion,
and migration [151] as well as shear thinning and membrane
elasticity [152]. Recently, Leong et al. presented a modified
compound drop model, which can consider stiffness, elastic-
ity, and viscosity of both the cortex and the nucleus to model
breast cancer cell entry into a constricted micro-channel. The
modeled cell entry behavior agrees with experimental obser-
vations [153].

The continuum cell models are easy to implement and
straightforward to use in computing the mechanical proper-
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ties of the cells if the biomechanical response at the cell
level is needed. It provides less insight into the detailed
molecular mechanical events. For this reason, more accurate
micro- and nano-structural models were developed. How-
ever, almost all micro- and nano-structural models were only
applicable to red human blood cell. The RBC membrane
is composed of a lipid bilayer and an attached cytoskele-
ton. The cytoskeleton consists primarily of spectrin proteins,
which form the network by linking short actin filaments. Dis-
cher et al. [154] and Li et al. [155] developed the spectrin-
level RBC model. The spectrin-level model corresponds to
an effective spectrin network where each spring represents
a single spectrin tetramer. The RBC is represented by a net-
work of springs in combination with bending rigidity and
constraints for surface-area and volume conservation. The
spectrin-level RBC model was successfully validated against
experimental data of the mechanical response of an individ-
ual cell. However it involves limited degrees of freedom and
application of the model in flow simulations requires pro-
hibitively expensive computations. For this reason, Pivkin
and Karniadakis developed a coarse-grained model based
on the spectrin-level RBC model using mean-field theory
and then applied it to DPD simulations in capillaries of
10µm in diameter while the blood velocity is typically about
1 mm/s [156]. This RBC, as a collection of DPD particles,
is immersed in DPD fluid. The RBC particles interact with
the fluid particles through DPD potentials and the temper-
ature of the system is controlled through the DPD thermo-
stat. Initially, the fluid is at rest and the RBC is placed in
the middle of the capillary. A body force is applied in the
axial direction to drive the flow in the tube. The RBC was
found to deform under the flow conditions and, after some
transition period, assumed the parachute-type shape, which
is commonly observed in experiments [157]. After the body
force is turned off, the DPD fluid slows down and eventu-
ally returns to rest, while the RBC recovers its equilibrium
biconcave shape. A more systematic and rigorous proce-
dure to derive coarse-grained RBC models was present by
Fedosov et al. [158]. The RBC is modeled by DPD and cap-
tures the elastic response at small and large deformations,
which agrees very well with experiments of RBC stretching
by optical tweezers. In addition, they also develop a stress-
free model which avoids a number of pitfalls of existing
RBC models, such as non-smooth or poorly controlled equi-
librium shape and dependence of the mechanical properties
on the initial triangulation quality. Fedosov et al. [159] also
extended this model to model adhesive dynamics of RBCs
in Malaria.

Zhou et al. [160] developed a similar approach for mod-
eling other cells in an attempt to simulate the breast can-
cer cells through a constricted micro-channel. Based on the
finite extensible non-linear elastic (FENE) bead spring chain
model, they successfully used DPD particles to construct a

Fig. 24 Particle model for cell membrane represented by a network of
springs linked DPD particles [160]
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Fig. 25 Snapshots of a single cell passing through a micro channel,
and the distance-to-origin profile. The origin is at the point of entry of
cell into the micro-channel [160]

phenomenological breast cancer cell Fig. 24. The model was
then used to investigate the transportation and deformation of
cell through a constricted micro-channel Fig. 25. It is found
that before entering the contracted micro-channel, the cell
gradually deforms with reducing velocity. As the cell grad-
ually enters the micro-channel, it elongates until its major
axis reaches maximum. As the front of the cell gradually
leaves the micro-channel, it restores its original structure with
increasing velocity. Those results are agrees with experimen-
tal observations [138] and the results obtained from com-
pound drop model [153]. The obtained patterns of cell defor-
mation, contraction and expansion as well the recovery of
its original shape are similar to experimental observations.
Size effects of the contraction micro-channel and influences
of cell membrane properties are also studied.
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5 Concluding Remarks

Dissipative particle dynamics is a coarse-grained molecular
dynamics method, in which a particle contains a cluster of
atoms/molecules. As the DPD method is associated with big-
ger particle size and soft conservative interaction potential,
it should be able to model problems with larger time and
length scale. As a mesoscale method, DPD is suitable for
modeling complex physics and it is able to reproduce con-
tinuum hydrodynamic when the time step in the time inte-
gration scheme approaches zero and the system size is large
enough for hydrodynamic (continuum) concepts and models
to be valid. Just as stated by Moeendarbary et al. [9], DPD is
“arguably one of the best mesoscale simulation techniques,
and in the near future, it has the potential to emerge as an
even more widely used modeling and simulation technique
for many complex fluid systems”.

As a coarse-grained molecular dynamics, DPD has many
similarities with MD. Both DPD and MD are deterministic
Lagrangian, particle methods (on meso and atomic scales
respectively). The computational procedures of DPD and
MD are also very much similar including particle initial-
ization, system equilibration, neighbor particle searching,
pairwise force computation, physical variable evaluation and
even pre- and post-processing. The solid boundary treatment
in DPD is also similar to that in MD, and usually involves the
use of frozen particles and the inclusion of reflection models.

However, DPD is different from MD in many aspects. One
primary feature of DPD is that DPD uses bigger particle and
soft conservative interaction potential, and it is therefore can
be applied to larger length and time scale than those in MD.
This makes the numerical simulation of the movement and
suspension of macromolecules such as DNA [with a uncoiled
length of O(10µm)] feasible. It is also possible to model the
movement and deformation of a single cell [with a diameter
of O(10µm)] or even a cluster of cells possible by using
DPD method.

The other main feature of the DPD method is the inclusion
of the dissipative force and random force, which act together
to maintain an essentially constant temperature with small
fluctuations around the nominal temperature. The conserva-
tive force in DPD is similar to that in MD, but different in the
interaction potential. The interaction potential is important
in MD as it determines the pattern of interaction between
particles. The interaction potential has been well investi-
gated in MD, and different interaction potentials have been
used for different materials/fluids. However, there are very
few investigations on the conservative interaction potentials
in DPD. The conventional DPD uses a simple conservative
force weighting function (wC (r) = 1 − r), which is repul-
sive and is effective in modeling fluids behaving like gas.
It is not able to simulate the flow of liquids with free sur-
faces, the behavior of bubbly liquids, droplet dynamics and

other important multiphase fluid flow processes. By combin-
ing two SPH smoothing functions (of polynomial form), it is
possible to construct conservative interaction potentials with
short-range repulsion and long-distance attraction. The cor-
responding strength coefficients and cut-off distances of the
repulsive part and attractive part determines the exact form
of the interaction potential and further determines the physi-
cal properties of the modeling DPD fluid. By using this new
interaction potential, it is possible to model complex systems
with co-existing liquid–gas–solid phases.

In classic molecular dynamics, dimensional, primal vari-
ables can be used in computer implementation, and the mod-
eling parameters can be correlated to the physical properties
of real materials/fluids. In contrast, DPD method is gener-
ally implemented in a non-dimensional form. In order to
match the modeling parameters with the physical proper-
ties of real materials/fluids, it should be careful in choosing
coefficients in DPD simulation. In general, some coefficients
can be determined by fitting the relevant data of the real fluid,
some are selected to maintain the numerical accuracy in sim-
ulating simple cases with analytical solutions. Another point
is that due to the soft interaction between DPD particles,
the Schmidt number and dynamic viscosity obtained from a
conventional DPD simulation are usually much lower than
those for a real fluid. This drawback can be remedied by
increasing the cut-off distance or reducing the exponential
factor of the weight function of the dissipative (and random)
force.

For the modeling of movement and suspension of macro-
molecules or movement and deformation of single cell, the
spring-bead chain models are necessary for simulating the
connectivity of neighboring DPD particles on macromole-
cules or cell. No matter what kind of spring-bead chain model
is used, one key point is to match the modeling parame-
ters (such as spring constants) with the physical properties
of real materials/fluids. For example, based on an analytical
theory, Fedosov developed a DPD model for simulating red
blood cell (RBC) to predict RBC mechanics, rheology and
dynamics, while the modeled membrane properties can be
uniquely related to experimentally determined RBC macro-
scopic properties [158]. The DPD is also found superior in
including additional physics in the model, though adding
addition forces. It is also useful for simulating very long
particle chains [57].

The computational effort of DPD simulation can be greatly
reduced by using proper algorithm and parallel computing
techniques. Similar to molecular dynamics simulation, the
main computational effort in DPD simulations arises from
the calculation of interaction forces between particles. A spe-
cial neighbor-list algorithm can be used in the DPD code
that allows the resultant neighbor-list to remain valid for
a number of time steps, typically 10–20 time steps [26].
This neighbor-list algorithm can greatly reduce the compu-
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tational time in calculating interaction forces between par-
ticles. In addition, the computational performance of the
DPD models can be greatly enhanced using parallel com-
puting techniques such as message passing interface (MPI)
and Graphic Processing Unit (GPU). The parallelization pro-
cedure of a DPD code is very similar to existing paral-
lelization techniques developed for MD and SPH simulations
[22].
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